A genetic mosaic approach for neural circuit mapping in Drosophila.
نویسندگان
چکیده
Transgenic manipulation of subsets of brain cells is increasingly used for studying behaviors and their underlying neural circuits. In Drosophila, the GAL4-upstream activating sequence (UAS) binary system is powerful for gene manipulation, but GAL4 expression is often too broad for fine mapping of neural circuits. Here, we describe the development of unique molecular genetic tools to restrict GAL4 expression patterns. Building on the GAL4-UAS system, our method adds two components: a collection of enhancer-trap recombinase, Flippase (ET-FLP), transgenic lines that provide inheritable, reproducible, and tissue-specific FLP and an FRT-dependent GAL80 "flip-in" construct that converts FLP expression into tissue-specific repression of GAL4 by GAL80. By including a UAS-encoded fluorescent protein, circuit morphology can be simultaneously marked while the circuit function is assessed using another UAS transgene. In a proof-of-principle analysis, we applied this ET-FLP-induced intersectional GAL80/GAL4 repression (FINGR) method to map the neural circuitry underlying fly wing inflation. The FINGR system is versatile and powerful in combination with the vast collection of GAL4 lines for neural circuit mapping as well as for clonal analysis based on the infusion of the yeast-derived FRT/FLP system of mitotic recombination into Drosophila. The strategies and tactics underlying our FINGR system are also applicable to other genetically amenable organisms in which transgenes including the GAL4, UAS, GAL80, and FLP factors can be applied.
منابع مشابه
Artificial Intelligence Based Approach for Identification of Current Transformer Saturation from Faults in Power Transformers
Protection systems have vital role in network reliability in short circuit mode and proper operating for relays. Current transformer often in transient and saturation under short circuit mode causes mal-operation of relays which will have undesirable effects. Therefore, proper and quick identification of Current transformer saturation is so important. In this paper, an Artificial Neural Network...
متن کاملChapter 3 - Mapping and Manipulating Neural Circuits in the Fly Brain
Drosophila is a marvelous system to study the underlying principles that govern how neural circuits govern behaviors. The scale of the fly brain ( 100,000 neurons) and the complexity of the behaviors the fly can perform make it a tractable experimental model organism. In addition, 100 years and hundreds of labs have contributed to an extensive array of tools and techniques that can be used to d...
متن کاملMapping and manipulating neural circuits in the fly brain.
Drosophila is a marvelous system to study the underlying principles that govern how neural circuits govern behaviors. The scale of the fly brain (approximately 100,000 neurons) and the complexity of the behaviors the fly can perform make it a tractable experimental model organism. In addition, 100 years and hundreds of labs have contributed to an extensive array of tools and techniques that can...
متن کاملMosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development.
We have modified an FLP/FRT-based genetic mosaic system to label either neurons derived from a common progenitor or isolated single neurons, in the Drosophila CNS. These uniquely labeled neurons can also be made homozygous for a mutation of interest within an otherwise phenotypically wild-type brain. Using this new mosaic system, not only can normal brain development be described with unprecede...
متن کاملAn efficient method for recombineering GAL4 and QF drivers.
Neural circuit mapping and manipulation are facilitated by independent control of gene expression in pre- and post-synaptic neurons. The GAL4/UAS and Q binary transcription systems have the potential to provide this capability. Of particular use in neural circuit mapping would be GAL4 and QF drivers specific for neurotransmitters and neurotransmitter receptors. Recently available Drosophila gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 37 شماره
صفحات -
تاریخ انتشار 2010